Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Rev Recent Clin Trials ; 18(2): 123-128, 2023.
Article in English | MEDLINE | ID: covidwho-20243996

ABSTRACT

BACKGROUND: Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPS) play a key role in the pathogenesis of osteoarthritis (OA). Recent research showed the involvement of some MMPs in COVID-19, but the results are limited and contradictory. OBJECTIVE: In this study, we investigated the levels of MMPs (MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10) and TIMP-1 in the plasma of patients with OA after recovery from COVID- 19. METHODS: The experiment involved patients aged 39 to 80 diagnosed with knee OA. All study participants were divided into three research groups: the control group included healthy individuals, the group OA included patients with enrolled cases of OA, and the third group of OA and COVID-19 included patients with OA who recovered from COVID-19 6-9 months ago. The levels of MMPs and TIMP-1 were measured in plasma by enzyme-linked immunosorbent assay. RESULTS: The study showed a change in the levels of MMPs in patients with OA who had COVID- 19 and those who did not have a history of SARS-CoV-2 infection. Particularly, patients with OA who were infected with coronavirus established an increase in MMP-2, MMP-3, MMP-8, and MMP-9, compared to healthy controls. Compared to normal subjects, a significant decrease in MMP-10 and TIMP-1 was established in both groups of patients with OA and convalescent COVID-19. CONCLUSION: Thus, the results suggest that COVID-19 can affect the proteolysis-antiproteolysis system even after a long postinfectious state and may cause complications of existing musculoskeletal pathologies.


Subject(s)
COVID-19 , Osteoarthritis , Humans , Tissue Inhibitor of Metalloproteinase-1 , Matrix Metalloproteinase 9 , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 3 , Tissue Inhibitor of Metalloproteinases , Matrix Metalloproteinase 10 , Matrix Metalloproteinase 8 , SARS-CoV-2 , Osteoarthritis/etiology
2.
Infektsiya I Immunitet ; 12(5):827-836, 2022.
Article in English | Web of Science | ID: covidwho-2309353

ABSTRACT

The international biomedical community has been currently facing a need to find a simple and most accessible type of analysis that helps to diagnose tuberculosis ( TB) with the maximum reliability even before the onset of clinical manifestations. Tuberculosis results in more deaths than any other pathogen, second only to pneumonia caused by the SARS-CoV-2 virus, but the majority of infected people remain asymptomatic. In addition, it is important to develop methods to distinguish various forms of tuberculosis infection course at early stages and to reliably stratify patients into appropriate groups (persons with a rapidly progressing infection, chronic course, latent infection carriers). Immunometabolism investigates a relationship between bioenergetic pathways and specific functions of immune cells that has recently become increasingly important in scientific research. The host anti-mycobacteria immune response in tuberculosis is regu lated by a number of metabolic networks that can interact both cooperatively and antagonistically, influencing an outcome of the disease. The balance between inflammatory and immune reactions limits the spread of mycobacteria in vivo and protects from developing tuberculosis. Cytokines are essential for host defense, but if uncontrolled, some mediators may contribute to developing disease and pathology. Differences in plasma levels of metabolites between individuals with advanced infection, LTBI and healthy individuals can be detected long before the onset of the major related clinical signs. Changes in amino acid and cortisol level may be detected as early as 12 months before the onset of the disease and become more prominent at verifying clinical diagnosis. Assessing serum level of certain amino acids and their ratios may be used as additional diagnostic markers of active pulmonary TB. Metabolites, including serum fatty acids, amino acids and lipids may contribute to detecting active TB. Metabolic profiles indicate about increased indolamine 2.3-dioxygenase 1 (IDO1) activity, decreased phospholipase activity, increased adenosine metabolite level, and fibrous lesions in active vs. latent infection. TB treatment can be adjusted based on individual patient metabolism and biomarker profiles. Thus, exploring immunometabolism in tuberculosis is necessary for development of new therapeutic strategies.

3.
Int J Mol Sci ; 23(18)2022 Sep 11.
Article in English | MEDLINE | ID: covidwho-2268242

ABSTRACT

Matrix metalloproteinases (MMPs) are involved in extracellular matrix remodeling through the degradation of extracellular matrix components and are also involved in the inflammatory response by regulating the pro-inflammatory cytokines TNF-α and IL-1ß. Dysregulation in the inflammatory response and changes in the extracellular matrix by MMPs are related to the development of various diseases including lung and cardiovascular diseases. Therefore, numerous studies have been conducted to understand the role of MMPs in disease pathogenesis. MMPs are involved in the pathogenesis of infectious diseases through a dysregulation of the activity and expression of MMPs. In this review, we discuss the role of MMPs in infectious diseases and inflammatory responses. Furthermore, we present the potential of MMPs as therapeutic targets in infectious diseases.


Subject(s)
Communicable Diseases , Tumor Necrosis Factor-alpha , Communicable Diseases/metabolism , Cytokines/metabolism , Extracellular Matrix/metabolism , Humans , Inflammation/metabolism , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinases/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
Mol Biol Rep ; 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2244480

ABSTRACT

BACKGROUND: Seemingly, the Matrix metalloproteinases (MMPs) play a role in the etiopathogenesis of coronavirus disease 2019 (COVID-19). Here in this study, we determined the association of MMP9 rs3918242, MMP3 rs3025058, and MMP2 rs243865 polymorphisms with the risk of COVID-19, especially in those with neurological syndrome (NS). METHODS: We enrolled 500 patients with COVID-19 and 500 healthy individuals. To genotype the target SNPs, the Real-time allelic discrimination technique was used. To determine serum levels of MMPs, Enzyme-linked immunosorbent assay (ELISA) was exerted. RESULTS: The MMP9 gene rs3918242 and MMP3 gene rs3025058 SNP were significantly associated with increased COVID-19 risk and susceptibility to COVID-19 with NS. The serum level of MMP-9 and MMP-3 was significantly higher in COVID-19 cases compared with the healthy controls. Serum MMP-9 and MMP-3 levels were also higher in COVID-19 subjects with NS in comparison to the healthy controls. The polymorphisms in MMP genes were not associated with serum level of MMPs. CONCLUSION: MMP9 and MMP3 gene polymorphisms increases the susceptibility to COVID-19 as well as COVID-19 with neurologic syndrome, but they probably have no role in the regulation of serum MMP-9 and MMP-3 levels.

5.
Cardiovascular Therapy and Prevention (Russian Federation) ; 21(10):33-40, 2022.
Article in Russian | EMBASE | ID: covidwho-2115075

ABSTRACT

Aim. To assess the change in the activity of the matrix metalloproteinase (MMP) system after 6-month spironolactone therapy in patients with heart failure (HF) with preserved (HFpEF) and mildly reduced ejection fraction (HFmrEF) after coronavirus disease 2019 (COVID-19). Material and methods. The study included 90 patients treated at the University Clinical Hospital 4 of the I. M. Sechenov First Moscow State Medical University with a laboratory-confirmed COVID-19. There were following inclusion criteria: age of 18-85 years;the presence of HFpEF and HFmrEF. The patients were randomized into two groups: group I (n=60) - patients with 6-month spironolactone therapy (25 mg/day) in addition to the standard therapy for HF, spironolactone was taken at a dose of 25 mg/day;Group II (comparison group, n=30) - patients who received standard therapy without spironolactone. All patients were determined plasma MMP concentrations. Results. There were no significant differences in the levels of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) between the groups when included in the study. A repeated investigation revealed a significant decrease in the concentrations of MMP-9 and TIMP-1 only in group I. In patients of group II, there were no significant changes in the plasma concentrations of MMP-9 and TIMP-1. The MMP-9/TIMP-1 ratio during the initial examination of patients did not have significant differences. After 6-months therapy, a significant decrease in the ratio of MMP-9/TIMP-1 was observed only in patients taking spironolactone. Conclusion. The results obtained confirm a significant decrease in MMP system activity after 6-month spironolactone therapy in patients with HFpEF and HFmrEF after COVID-19. The described antifibrotic effects of spironolactone make it possible to recommend the use of this drug in this category of patients to reduce the negative effect of MMPs on cardiovascular system. Copyright © 2022 Vserossiiskoe Obshchestvo Kardiologov. All rights reserved.

6.
Cells ; 11(16)2022 08 10.
Article in English | MEDLINE | ID: covidwho-2032864

ABSTRACT

Neurofilament light chain (NfL) is a specific biomarker of neuro-axonal damage. Matrix metalloproteinases (MMPs) are zinc-dependent enzymes involved in blood-brain barrier (BBB) integrity. We explored neuro-axonal damage, alteration of BBB integrity and SARS-CoV-2 RNA presence in COVID-19 patients with severe neurological symptoms (neuro-COVID) as well as neuro-axonal damage in COVID-19 patients without severe neurological symptoms according to disease severity and after recovery, comparing the obtained findings with healthy donors (HD). Overall, COVID-19 patients (n = 55) showed higher plasma NfL levels compared to HD (n = 31) (p < 0.0001), especially those who developed ARDS (n = 28) (p = 0.0005). After recovery, plasma NfL levels were still higher in ARDS patients compared to HD (p = 0.0037). In neuro-COVID patients (n = 12), higher CSF and plasma NfL, and CSF MMP-2 levels in ARDS than non-ARDS group were observed (p = 0.0357, p = 0.0346 and p = 0.0303, respectively). SARS-CoV-2 RNA was detected in four CSF and two plasma samples. SARS-CoV-2 RNA detection was not associated to increased CSF NfL and MMP levels. During COVID-19, ARDS could be associated to CNS damage and alteration of BBB integrity in the absence of SARS-CoV-2 RNA detection in CSF or blood. CNS damage was still detectable after discharge in blood of COVID-19 patients who developed ARDS during hospitalization.


Subject(s)
Blood-Brain Barrier , COVID-19 , Axons , Humans , RNA, Viral , SARS-CoV-2
7.
Rinsho Ketsueki ; 63(5): 403-409, 2022.
Article in Japanese | MEDLINE | ID: covidwho-1879647

ABSTRACT

The mortality rate due to coronavirus disease 2019 (COVID-19) reached 5.3 million. However, identifying the novel treatment targets that ultimately reduce or prevent disease aggravation will be possible by understanding the mechanism and pathophysiology underlying the COVID-19 aggravation. Authors of previous studies have identified the "cytokine storm" that constitutes the secretion of inflammatory cytokines driven by the coagulation/fibrinolytic system as an inflammatory cytodynamic control mechanism that contributes to the aggravated COVID-19 pathology and the pathophysiology of related diseases. Vasculature-lining endothelial cells are bioreactors that produce or contribute to the modulation status of cytokines and coagulation and fibrinolytic system factors. The key steps in the pathophysiology of organ damage include the destabilization of the angiocrine system triggered by vascular endothelial damage during severe COVID-19. Overproduced or imbalanced angiocrine factors and inflammatory cytokines contribute to major COVID-19 complications. Within its scope, this study outlines the significance of the fibrinolytic system in the pathophysiology of inflammatory diseases, focusing on the research results. The possibility of molecular that target these angiocrine and fibrinolytic factors for inflammatory diseases as novel treatment approaches for inflammatory diseases, such as COVID-19, was discussed.


Subject(s)
COVID-19 Drug Treatment , Cytokine Release Syndrome , Cytokine Release Syndrome/drug therapy , Cytokines , Endothelial Cells , Humans , SARS-CoV-2
8.
Int J Mol Sci ; 23(9)2022 May 05.
Article in English | MEDLINE | ID: covidwho-1820298

ABSTRACT

Though COVID-19 is primarily characterized by symptoms in the periphery, it can also affect the central nervous system (CNS). This has been established by the association between stroke and COVID-19. However, the molecular mechanisms that cause stroke related to a COVID-19 infection have not been fully explored. More specifically, stroke and COVID-19 exhibit an overlap of molecular mechanisms. These similarities provide a way to better understand COVID-19 related stroke. We propose here that peripheral macrophages upregulate inflammatory proteins such as matrix metalloproteinases (MMPs) in response to SARS-CoV-2 infection. These inflammatory molecules and the SARS-CoV-2 virus have multiple negative effects related to endothelial dysfunction that results in the disruption of the blood-brain barrier (BBB). Finally, we discuss how the endothelial blood-brain barrier injury alters central nervous system function by leading to astrocyte dysfunction and inflammasome activation. Our goal is to elucidate such inflammatory pathways, which could provide insight into therapies to combat the negative neurological effects of COVID-19.


Subject(s)
COVID-19 , Stroke , Blood-Brain Barrier/metabolism , COVID-19/complications , Central Nervous System , Humans , SARS-CoV-2 , Stroke/metabolism
9.
Revista Rol De Enfermeria ; 44(10):10-+, 2021.
Article in Spanish | Web of Science | ID: covidwho-1609974

ABSTRACT

The first wave of COVID-19 had a major impact on the Spanish healthcare system. This impact was even more accentuated for certain professional groups, such as nursing staff. This article presents the testimony of 12 nurses from 10 health centres and hospitals in the Community of Madrid on the impact of the first wave of the pandemic on wound care and evaluates the use of dressings with new technologies that have helped in the evolution of wounds during this period.

10.
Int J Mol Sci ; 22(24)2021 Dec 17.
Article in English | MEDLINE | ID: covidwho-1580691

ABSTRACT

Although blood-heart-barrier (BHB) leakage is the hallmark of congestive (cardio-pulmonary) heart failure (CHF), the primary cause of death in elderly, and during viral myocarditis resulting from the novel coronavirus variants such as the severe acute respiratory syndrome novel corona virus 2 (SARS-CoV-2) known as COVID-19, the mechanism is unclear. The goal of this project is to determine the mechanism of the BHB in CHF. Endocardial endothelium (EE) is the BHB against leakage of blood from endocardium to the interstitium; however, this BHB is broken during CHF. Previous studies from our laboratory, and others have shown a robust activation of matrix metalloproteinase-9 (MMP-9) during CHF. MMP-9 degrades the connexins leading to EE dysfunction. We demonstrated juxtacrine coupling of EE with myocyte and mitochondria (Mito) but how it works still remains at large. To test whether activation of MMP-9 causes EE barrier dysfunction, we hypothesized that if that were the case then treatment with hydroxychloroquine (HCQ) could, in fact, inhibit MMP-9, and thus preserve the EE barrier/juxtacrine signaling, and synchronous endothelial-myocyte coupling. To determine this, CHF was created by aorta-vena cava fistula (AVF) employing the mouse as a model system. The sham, and AVF mice were treated with HCQ. Cardiac hypertrophy, tissue remodeling-induced mitochondrial-myocyte, and endothelial-myocyte contractions were measured. Microvascular leakage was measured using FITC-albumin conjugate. The cardiac function was measured by echocardiography (Echo). Results suggest that MMP-9 activation, endocardial endothelial leakage, endothelial-myocyte (E-M) uncoupling, dyssynchronous mitochondrial fusion-fission (Mfn2/Drp1 ratio), and mito-myocyte uncoupling in the AVF heart failure were found to be rampant; however, treatment with HCQ successfully mitigated some of the deleterious cardiac alterations during CHF. The findings have direct relevance to the gamut of cardiac manifestations, and the resultant phenotypes arising from the ongoing complications of COVID-19 in human subjects.


Subject(s)
COVID-19/complications , Heart Failure/metabolism , Heart/virology , Animals , Blood/virology , Blood Physiological Phenomena/immunology , COVID-19/physiopathology , Cardiomegaly/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Physiological Phenomena/immunology , Disease Models, Animal , Endothelium/metabolism , Heart/physiopathology , Heart Failure/virology , Hydroxychloroquine/pharmacology , Male , Matrix Metalloproteinase 9/drug effects , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Muscle Cells/metabolism , Myocardium/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Ventricular Remodeling/physiology
12.
J Inflamm Res ; 14: 5337-5347, 2021.
Article in English | MEDLINE | ID: covidwho-1470719

ABSTRACT

PURPOSE: Clinically, it is challenging to manage diabetic patients with periodontitis. Biochemically, both involve a wide range of inflammatory/collagenolytic conditions which exacerbate each other in a "bi-directional manner." However, standard treatments for this type of periodontitis rely on reducing the bacterial burden and less on controlling hyper-inflammation/excessive-collagenolysis. Thus, there is a crucial need for new therapeutic strategies to modulate this excessive host response and to promote enhanced resolution of inflammation. The aim of the current study is to evaluate the impact of a novel chemically-modified curcumin 2.24 (CMC2.24) on host inflammatory response in diabetic rats. METHODS: Type I diabetes was induced by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC2.24, or the vehicle-alone, was administered by oral gavage daily for 3 weeks to the diabetics. Micro-CT was used to analyze morphometric changes and quantify bone loss. MMPs were analyzed by gelatin zymography. Cell function was examined by cell migration assay, and cytokines and resolvins were measured by ELISA. RESULTS: In this severe inflammatory disease model, administration of the pleiotropic CMC2.24 was found to normalize the excessive accumulation and impaired chemotactic activity of macrophages in peritoneal exudates, significantly decrease MMP-9 and pro-inflammatory cytokines to near normal levels, and markedly increase resolvin D1 (RvD1) levels in the thioglycolate-elicited peritoneal exudates (tPE). Similar effects on MMPs and RvD1 were observed in the non-elicited resident peritoneal washes (rPW). Regarding clinical relevance, CMC2.24 significantly inhibited the loss of alveolar bone height, volume and mineral density (ie, diabetes-induced periodontitis and osteoporosis). CONCLUSION: In conclusion, treating hyperglycemic diabetic rats with CMC2.24 (a tri-ketonic phenylaminocarbonyl curcumin) promotes the resolution of local and systemic inflammation, reduces bone loss, in addition to suppressing collagenolytic MMPs and pro-inflammatory cytokines, suggesting a novel therapeutic strategy for treating periodontitis complicated by other chronic diseases.

13.
Arch Bronconeumol ; 58(2): 142-149, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1385015

ABSTRACT

INTRODUCTION: Impairment in pulmonary function tests and radiological abnormalities are a major concern in COVID-19 survivors. Our aim is to evaluate functional respiratory parameters, changes in chest CT, and correlation with peripheral blood biomarkers involved in lung fibrosis at two and six months after SARS-CoV-2 pneumonia. METHODS: COVID-FIBROTIC (clinicaltrials.gov NCT04409275) is a multicenter prospective observational cohort study aimed to evaluate discharged patients. Pulmonary function tests, circulating serum biomarkers, chest radiography and chest CT were performed at outpatient visits. RESULTS: In total, 313, aged 61.12 ± 12.26 years, out of 481 included patients were available. The proportion of patients with DLCO < 80% was 54.6% and 47% at 60 and 180 days. Associated factors with diffusion impairment at 6 months were female sex (OR: 2.97, 95%CI 1.74-5.06, p = 0.001), age (OR: 1.03, 95% CI: 1.01-1.05, p = 0.005), and peak RALE score (OR: 1.22, 95% CI 1.06-1.40, p = 0.005). Patients with altered lung diffusion showed higher levels of MMP-7 (11.54 ± 8.96 vs 6.71 ± 4.25, p = 0.001), and periostin (1.11 ± 0.07 vs 0.84 ± 0.40, p = 0.001). 226 patients underwent CT scan, of whom 149 (66%) had radiological sequelae of COVID-19. In severe patients, 68.35% had ground glass opacities and 38.46% had parenchymal bands. Early fibrotic changes were associated with higher levels of MMP7 (13.20 ± 9.20 vs 7.92 ± 6.32, p = 0.001), MMP1 (10.40 ± 8.21 vs 6.97 ± 8.89, p = 0.023), and periostin (1.36 ± 0.93 vs 0.87 ± 0.39, p = 0.001). CONCLUSION: Almost half of patients with moderate or severe COVID-19 pneumonia had impaired pulmonary diffusion six months after discharge. Severe patients showed fibrotic lesions in CT scan and elevated serum biomarkers involved in pulmonary fibrosis.


INTRODUCCIÓN: El deterioro de la función pulmonar en las pruebas correspondientes y las alteraciones radiológicas son las preocupaciones principales en los supervivientes de la COVID-19. Nuestro objetivo fue evaluar los parámetros de la función respiratoria, los cambios en la TC de tórax y la correlación con los biomarcadores en sangre periférica involucrados en la fibrosis pulmonar a los 2 y a los 6 meses tras la neumonía por SARS-CoV-2. MÉTODOS: El ensayo COVID-FIBROTIC (clinicaltrials.gov NCT04409275) es un estudio de cohortes multicéntrico, prospectivo y observacional cuyo objetivo fue evaluar los pacientes dados de alta. Se realizaron pruebas de función pulmonar, detección de biomarcadores en plasma circulante y radiografía y TC de tórax durante las visitas ambulatorias. RESULTADOS: En total 313 pacientes, de 61,12 ± 12,26 años, de los 481 incluidos estuvieron disponibles.La proporción de pacientes con DLCO < 80% fue del 54,6 y del 47% a los 60 y 180 días.Los factores que se asociaron a la alteración de la difusión a los 6 meses fueron el sexo femenino (OR: 2,97; IC del 95%: 1,74-5,06; p = 0,001), la edad (OR: 1,03; IC del 95%: 1,01-1,05; p = 0,005) y la puntuación RALE más alta (OR: 1,22; IC del 95%: 1,06-1,40; p = 0,005). Los pacientes con alteración de la difusión pulmonar mostraron niveles más altos de MMP-7 (11,54 ± 8,96 frente a 6,71 ± 4,25; p = 0,001) y periostina (1,11 ± 0.07 frente a 0,84 ± 0,40; p = 0,001). Se le realizó una TC a 226 pacientes de los cuales 149 (66%) presentaban secuelas radiológicas de la COVID-19. En los pacientes graves, el 68,35% mostraban opacidades en vidrio esmerilado y el 38,46%, bandas parenquimatosas. Los cambios fibróticos tempranos se asociaron a niveles más altos de MMP7 (13,20 ± 9,20 frente a 7,92 ± 6,32; p = 0,001), MMP1 (10,40 ± 8,21 frente a 6,97 ± 8,89; p = 0,023), y periostina (1,36 ± 0,93 frente a 0,87 ± 0,39; p = 0,001). CONCLUSIÓN: Casi la mitad de los pacientes con neumonía moderada o grave por COVID-19 presentaba alteración de la difusión pulmonar 6 meses después del alta. Los pacientes graves mostraban lesiones fibróticas en laTC y un aumento de los biomarcadores séricos relacionados con la fibrosis pulmonar.

14.
Int Immunopharmacol ; 100: 108076, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1375975

ABSTRACT

BACKGROUND: Evidence show that Matrix metalloproteinases (MMPs) have been associated with neurological complications in the viral infections. Here in the current investigation, we intended to reveal if MMPs are potentially involved in the development of neurological symptoms in the patients with Coronavirus disease 2019 (COVID-19). METHODS: The levels of MMPs, inflammatory cytokines, chemokines, and adhesion molecules were evaluated in the serum and cerebrospinal fluid (CSF) samples from 10 COVID-19 patients with neurological syndrome (NS) and 10 COVID-19 patients lacking NS. Monocytes from the CSF samples were treated with TNF-α and the secreted levels of MMPs were determined. RESULTS: The frequency of monocytes were increased in the CSF samples of COVID-19 patients with NS compared to patients without NS. Levels of inflammatory cytokines IL-1ß, IL-6, and TNF-α, chemokines CCL2, CCL3, CCL4, CCL7, CCL12, CXCL8, and CX3CL1, MMPs MMP-2, MMP-3, MMP-9, and MMP-12, and adhesion molecules ICAM-1, VCAM-1, and E-selectin were significantly increased in the CSF samples of COVID-19 patients with NS compared with patients without NS. Treatment of CSF-derived monocytes obtained from COVID-19 patients with NS caused increased production of MMP-2, MMP-3, MMP-9, and MMP-12. CONCLUSIONS: Higher levels of inflammatory cytokines might promote the expression of adhesion molecules on blood-CSF barrier (BCSFB), resulting in facilitation of monocyte recruitment. Increased levels of CSF chemokines might also help to the trafficking of monocytes to CSF. Inflammatory cytokines might enhance production of MMPs from monocytes, leading to disruption of BCSFB (and therefore further infiltration of inflammatory cells to CSF) in COVID-19 patients with NS.


Subject(s)
COVID-19/complications , Matrix Metalloproteinases/physiology , Nervous System Diseases/etiology , SARS-CoV-2 , Aged , Chemokines/analysis , Cytokines/analysis , Female , Humans , Intercellular Adhesion Molecule-1/analysis , Male , Middle Aged
15.
Clin Oral Investig ; 26(2): 1361-1374, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1375646

ABSTRACT

OBJECTIVES: The study aimed to clinically assess the association between periodontitis and COVID-19-related outcomes. MATERIAL AND METHODS: Data pertaining to patient demographics, medical history, blood parameters, periodontal clinical examination and aMMP-8 point-of-care diagnostics (both site-level and patient-level) was recorded for eighty-two COVID-19-positive patients. COVID-19-related outcomes such as COVID-19 pneumonia, death/survival, types of hospital admission and need of assisted ventilation were also assessed. RESULTS: Males were predominantly afflicted with COVID-19, with advanced age exhibiting a greater association with the presence of periodontitis. Higher severity of periodontitis led to 7.45 odds of requiring assisted ventilation, 36.52 odds of hospital admission, 14.58 odds of being deceased and 4.42 odds of COVID-19-related pneumonia. The aMMP-8 mouthrinse kit was slightly more sensitive but less specific than aMMP-8 site-specific tests. CONCLUSIONS: Based on the findings of the present study, periodontitis seems to be related to poorer COVID-19-related outcomes. However, within the constraints of this work, a direct causality may not be established. Periodontitis, by means of skewing the systemic condition for a number of comorbidities, may eventually influence COVID-19 outcomes in an indirect manner. CLINICAL RELEVANCE: The study is the first to clinically, and by means of a validated point-of-care diagnostic methodology, assess the association between periodontal health and COVID-19-related outcomes. Assessment of the periodontal status of individuals can aid in the identification of risk groups during the pandemic along with reinforcing the need to maintain oral hygiene and seeking periodontal care.


Subject(s)
COVID-19 , Periodontitis , Humans , Male , Matrix Metalloproteinase 8 , Pandemics , Periodontitis/epidemiology , SARS-CoV-2
16.
Clin Microbiol Infect ; 27(6): 892-896, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1116473

ABSTRACT

OBJECTIVES: Coronavirus disease 2019 (COVID-19) survivors are reporting residual abnormalities after discharge from hospital. Limited information is available about this stage of recovery or the lingering effects of the virus on pulmonary function and inflammation. This study aimed to describe lung function in patients recovering from COVID-19 hospitalization and to identify biomarkers in serum and induced sputum samples from these patients. METHODS: Patients admitted to Spanish hospitals with laboratory-confirmed COVID-19 infection by a real-time PCR (RT-PCR) assay for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were recruited for this study. Each hospital screened their lists of discharged patients at least 45 days after symptom onset. SARS-CoV-2-infected patients were divided into mild/moderate and severe disease groups according to the severity of their symptoms during hospitalization. Patients' epidemiological and medical histories, comorbidities, chronic treatments, and laboratory parameters were evaluated. Pulmonary function tests, the standardized 6-minute walk test (6MWT) and chest computed tomography (CT) were also performed. The levels of proteases, their inhibitors, and shed receptors were measured in serum and induced sputum samples. RESULTS: A total of 100 patients with respiratory function tests were included in this study. The median number of days after the onset of symptoms was 104 (IQR 89.25, 126.75). COVID-19 was severe in 47% of patients (47/100). CT was normal in 48% of patients (48/100). Lung function was normal forced expiratory volume in one second (FEV1) ≥80%, forced vital capacity (FVC) ≥80%, FEV1/FVC ≥0.7, and diffusing capacity for carbon monoxide (DLCO) ≥80% in 92% (92/100), 94% (94/100), 100% (100/100) and 48% (48/100) of patients, respectively. Multivariate analysis showed that a DLCO <80% (OR 5.92; 95%CI 2.28-15.37; p < 0.0001) and a lower serum lactate dehydrogenase level (OR 0.98; 95%CI 0.97-0.99) were associated with the severe disease group of SARS-CoV-2 cases during hospital stay. CONCLUSIONS: A diffusion deficit (DLCO <80%) was still present after hospital discharge and was associated with the most severe SARS-CoV-2 cases.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Lung/physiopathology , Adult , Aged , Biomarkers/blood , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Comorbidity , Female , Follow-Up Studies , Humans , Male , Middle Aged , Patient Discharge , Prospective Studies , Respiratory Function Tests , SARS-CoV-2/isolation & purification , Spain/epidemiology , Survivors , Tomography, X-Ray Computed
17.
Mol Cell Biochem ; 476(4): 1891-1895, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1044487

ABSTRACT

Corona virus disease-19 (covid-19) is caused by a coronavirus that is also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and is generally characterized by fever, respiratory inflammation, and multi-organ failure in susceptible hosts. One of the first things during inflammation is the response by acute phase proteins coupled with coagulation. The angiotensinogen (a substrate for hypertension) is one such acute phase protein and goes on to explain an association of covid-19 with that of angiotensin-converting enzyme-2 (ACE2, a metallopeptidase). Therefore, it is advisable to administer, and test the efficacy of specific blocker(s) of angiotensinogen such as siRNAs or antibodies to covid-19 subjects. Covid-19 activates neutrophils, macrophages, but decreases T-helper cells activity. The metalloproteinases promote the activation of these inflammatory immune cells, therefore; we surmise that doxycycline (a metalloproteinase inhibitor, and a safer antibiotic) would benefit the covid-19 subjects. Along these lines, an anti-acid has also been suggested for mitigation of the covid-19 complications. Interestingly, there are three primary vegetables (celery, carrot, and long-squash) which are alkaline in their pH-range as compared to many others. Hence, treatment with fresh juice (without any preservative) from these vegies or the antioxidants derived from purple carrot and cabbage together with appropriate anti-coagulants may also help prevent or lessen the detrimental effects of the covid-19 pathological outcomes. These suggested remedies might be included in the list of putative interventions that are currently being investigated towards mitigating the multi-organ damage by Covid-19 during the ongoing pandemic.


Subject(s)
COVID-19 Drug Treatment , Heart Failure/drug therapy , Inflammation/drug therapy , RNA, Small Interfering/therapeutic use , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensinogen/antagonists & inhibitors , Angiotensinogen/genetics , COVID-19/genetics , COVID-19/physiopathology , COVID-19/virology , Heart/drug effects , Heart/physiopathology , Heart/virology , Heart Failure/complications , Heart Failure/physiopathology , Heart Failure/virology , Humans , Inflammation/complications , Inflammation/genetics , Inflammation/virology , Neutrophils/virology , Pandemics , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL